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Abstract

The Audio Spectrogram Transformer (AST), a
vision transformer adapted for audio, showed
that CNNs are not a strictly necessary building
block for end-to-end audio classification. AST
achieves SOTA results for environmental sound
classification with a simpler architecture and
faster training convergence compared to tradi-
tional convolution-based audio encoders. We
investigate AST’s effectiveness in spoken lan-
guage processing. We fine-tune AST for speech
emotion recognition (SER), genre classification
for music with singing, and automatic speech
recognition (ASR). AST outperforms SOTA
baselines for music genre classification as mea-
sured on the GTZAN dataset. Results on SER
were mixed, with AST beating competitive
baselines on the RAVDESS dataset but slightly
under-performing on IEMOCAP. Finally, we
introduce a novel CNN-free ASR architecture,
ASTForCTC. In an ultra-low-resource setting
using just 10 hours of training data, we achieve
a train WER of 0.059 on Google FLEURS
en_US. With 100 hours of training data, we
achieve a test WER of 0.738 on Librispeech.
As most SOTA ASR models are pre-trained on
significantly more data (50K-1M hours), we ex-
pect test WER to improve given more training
data. Our code can be found here.

1 Introduction

Convolutional neural networks (CNNs) have been
widely used to learn representations of spectro-
grams for end-to-end audio and speech modeling
tasks. Recently, the Audio Spectrogram Trans-
former (AST) (Gong et al., 2021), a vision trans-
former (ViT) (Dosovitskiy et al., 2021) for audio
classification, has been shown to achieve superior
performance on certain tasks while having a sim-
pler architecture than CNN-based models. The
simpler architecture makes it faster to train, which
is advantageous for large-scale machine learning
applications. Gong et al. (2021) show that AST
achieves state-of-the-art results on classification

tasks such as AudioSet (Gemmeke et al., 2017)
and ESC-50 (Piczak), which primarily focus on
discriminating across environmental sounds.

AST also achieves SOTA results on Speech Com-
mands (Warden, 2018), which is a simple classi-
fication task of 35 words. Beyond this, there has
been little additional investigation into AST’s per-
formance on tasks involving human speech. The
aim of this work is to explore AST’s effectiveness
for spoken human language.

We assess AST’s performance on three tasks.
First, we fine-tune and test AST on recognizing
the emotion in a track of spoken language. Emo-
tion recognition in speech is important for appli-
cations such as consumer sentiment analysis and
human-computer interaction, where understanding
the speaker’s emotional state can change the voice
agent’s responses and enhance user experience.
Second, we examine AST’s performance in deter-
mining the genre of a piece of music that includes
singing. This is a complex task, as the best mod-
els will use both musical and lyrical features when
making the classification. Finally, we devise a new
architecture that adds a connectionist temporal clas-
sification (CTC) head to AST for automatic speech
recognition, and we evaluate the performance of
this architecture by calculating Word Error Rates
(WERs).

2 Related Work

We compare AST against competitive baselines for
the tasks selected, all of which use convolution-
based architectures.

Speech Emotion Recognition Since we fine-
tuned separately on two datasets (explained in de-
tail in Section 4), we selected separate SER base-
lines for each dataset. For the RAVDESS dataset,
the SOTA is Att-Net (Mustaqeem and Kwon, 2021),
a self-attention model where a dilated CNN uses
channel and spatial attention for the extraction of
cues from the input tensors. The SOTA model for
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the IEMOCAP dataset is DS-CNN (Huang et al.,
2014), based on a depthwise separable convolution
operation (a depthwise convolution followed by a
pointwise convolution).

Music Genre Classification The state-of-the-art
model for music genre classification is MUSER
(MUsic SEquence Representation) (Chen et al.,
2022). MUSER uses a tri-modal contrastive learn-
ing framework with audio, spectrum, and text in-
puts. A CNN (ResNet-50) image encoder serves as
a music spectrum encoder, and ESResNeXt is used
as an audio encoder. Music metadata is converted
into text form and is used to train a text encoder (a
transformer network).

Automatic Speech Recognition ASR models
typically fall under two categories: 1) Encoder-
only models, such as Conformer (Gulati et al.,
2020) and XLSR (Conneau et al., 2020) with a
CTC head on top and 2) Encoder-decoder mod-
els. Our ASTForCTC approach falls under the first
category. However, unlike all other established
methods, which use a CNN for feature extraction
from the waveform, our method is purely vision
transformer-based.

The Conformer (Gulati et al., 2020) is one ex-
ample of an encoder-only ASR model. Each Con-
former block contains a feed-forward module fol-
lowed by a multi-head self-attention module, a
convolution model, another feed-forward module,
and then layernorm. When it was released, the
Conformer was a great improvement over the then
state-of-the-art CNN and transformer-based mod-
els since it achieved a WER of 4.3% on the Lib-
rispeech test set without using a language model.
However, the transformer-only model that Con-
former was compared to was TransformerTrans-
ducer (Zhang et al., 2020), which in contrast to
AST, takes in audio sequences rather than images
(spectrograms) as input.

It is also important to note the amount of data
that industry-leading ASR models are trained on.
The original Conformer (Gulati et al., 2020) is
trained using the full 970-hour Librispeech dataset.
Since the introduction of the Conformer, Wav2Vec
2.0 (Baevski et al., 2020), XLS-R (Babu et al.,
2021), and Whisper (Radford et al., 2022) have also
proven to be leading models for ASR. Wave2Vec
2.0 is pre-trained on 53K hours of unlabeled speech.
Whisper is pre-trained on 680K hours of multilin-
gual and multitask supervised data.

The top-performing model on the Librispeech

Figure 1: The ASTForCTC architecture only takes in im-
age patches from the Mel-spectrogram as input. Charac-
ters may be repeated, and the model may predict blank
tokens (ϵ). Figure is adapted from (Gong et al., 2021).

test set achieves a test WER of 1.34 and combines
FAdam optimization with a 600M parameter Con-
former model pre-trained on a 60K hour corpus
(Hwang, 2024). In contrast, AST is 86M parame-
ters. AST was pre-trained on AudioSet, (Gemmeke
et al., 2017), a collection of over 2 million 10-
second audio clips excised from YouTube videos,
which totals to only 5.5k hours of speech.

3 Approach

The AST model is a 12-layer transformer encoder
with a hidden size of 768 and 86M parameters.
The input to AST is prepared as follows: an audio
waveform of t seconds is converted into a sequence
of 128-dimensional log Mel filterbank (fbank) fea-
tures. This results in a 128×100t spectrogram as
input. The spectrogram is then split into a sequence
of N 16x16 patches. Each 16×16 patch is flattened
to an embedding of size 768 using a linear projec-
tion layer.

Classification For classification tasks, we use
the ASTForClassification implementation al-
ready available on HuggingFace. We fine-tuned
the model with a batch size of 16, the AdamW op-
timizer, and cross-entropy loss. We used a learning
rate of 1e-5 with a weight decay of 0.01 and fine-
tuned the model for either 5 or 20 epochs. We also
used a linear learning rate scheduler.

ASR To our knowledge, there is no prior AST-
based implementation or pre-trained AST model
for ASR. We built a novel ASTForCTC model and
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data processor for ASR. To create ASTForCTC, we
added a linear layer to the base AST model. For
each final hidden state returned by the AST encoder,
the model predicts a corresponding probability dis-
tribution across all characters in the vocabulary.
We minimize the CTC loss between the output and
ground truth sequence. The architecture is illus-
trated in Figure 1. To prepare the data for training,
we also built a custom ASTProcessor that com-
bines the ASTFeatureExtractor for audio pro-
cessing with a Wav2Vec2CTCTokenizer for label
processing. Aside from initializing our ASTForCTC
model from the AudioSet weights, we essentially
trained for ASTForCTC model for ASR from scratch.
We used the same learning rate and scheduler as
for classification.

4 Experiments

For all of our tasks, we initialize from an AST
model released on HuggingFace that was pre-
trained with AudioSet (Gemmeke et al., 2017),
which itself was initialized from a ViT-Base model
pre-trained on ImageNet. The AudioSet task is
multi-label classification across a set of 527 labels,
such as music, speech, vehicle, etc.

We ran all of our experiments on one Google
Colab A100 GPU using 1000 compute credits. For
the classification tasks, fine-tuning time took an
average of 10-15 minutes for 5 epochs and 40-60
minutes for 20 epochs.

For ASR, we fine-tuned for 150 epochs on the
Google FLEURS dataset and 25 epochs for the
Librispeech 100 hour train set. Fine-tuning time
was on the order of 12-24 hours for each dataset.

4.1 Datasets

SER We fine-tuned AST on two different SER
datasets. The IEMOCAP (Busso et al., 2008)
dataset consists of 12 hours of audiovisual data, seg-
mented into 1-3 second audio clips across 5 actors
and 5 emotions (angry, excited, fear, sad, surprised,
frustrated, happy, disappointed, and neutral). The
RAVDESS (Livingstone and Russo, 2018) dataset
contains 1440 files (60 trials per actor x 24 actors)
of audio with calm, happy, sad, angry, fearful, sur-
prise, and disgust speech emotions.

Music Genre Classification The GTZAN
(Tzanetakis et al., 2001) dataset covers 10 genres
of music: blues, classical, country, disco, hip-hop,
jazz, metal, pop, reggae, and rock. For each genre,
it contains 100 audio tracks, each of which is 30

seconds long. The audio samples were collected
in 2000-2001 from a range of sources, such as per-
sonal CDs, radio, and microphone recordings, in
order to capture a variety of sound conditions.

ASR We used the Google FLEURS en_US
dataset (Conneau et al., 2022) for ASR fine-tuning,
which contains 3,640 examples (approximately 12
hours) of spoken Wikipedia articles. We also used
the 100-hour split of the Librispeech (Panayotov
et al., 2015) train set and the full test set. Though
we also tried to use additional splits of the Lib-
rispeech dataset (350 hours of clean data and 500
hours of “other” speech), we ran into disk and mem-
ory usage limitations.

4.2 Results

To evaluate the AST’s performance on classifica-
tion tasks, we measured accuracy. For ASR, we
measured the Word Error Rate (WER).

Emotion and Music Genre Our results for the
classification tasks are summarized in Table 1. The
AST model achieved SOTA performance on music
genre classification. Figure 2 illustrates there are
clear differences in what AST attends to when com-
paring tracks of two different genres. The results
of the SER tasks were mixed. On the RAVDESS
dataset, AST outperformed the current SOTA base-
line, but on the IEMOCAP dataset, it underper-
formed. A possible explanation for the perfor-
mance difference is AudioSet pre-training. Au-
dioSet contains over one million music segments
from YouTube, but may not have a wide variety of
emotional speech.

ASR The WERs of ASTForCTC on FLEURS and
Librispeech are shown in Table 2. On FLEURs,
ASTForCTC performed surprisingly well on the
training set, despite being trained in an extremely
low-resource setting (10 hours of data). We ob-
tained a WER of 0.059 on the FLEURS train set
and 1.083 on the test set. Sample predictions are
shown in Figure 3. Despite overfitting to the train
set, we did find that the AST model did a good
job of learning to detect the number of words in
an utterance – the ratio of the number of words
predicted to the number of actual words was 1.00
in the train set and 1.05 in the test set for FLEURS.
Training with more data helped to combat the over-
fitting. Using the 100-hour split of Librispeech for
training, the WER for train and test was around 0.7.
This indicates that more data can help reduce WER
and combat overfitting.
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Task Baseline AST (5 Epochs) AST (20 Epochs)
Music Genre Classification (GTZAN) 0.825 0.865 0.900
SER (IEMOCAP) 0.788 0.640 0.7
SER (RAVDESS) 0.800 0.760 0.816

Table 1: Accuracy results for different classification tasks. The best results are in bold.

Task Train Test
FLEURS, en_us (150 epochs) 0.059 1.083
Librispeech, (25 epochs) 0.719 0.738

Table 2: Word error rates (WERs) of ASTForCTC.

On both FLEURS and Librispeech, we observed
a few hallucinations toward the end of sentences.
For example, on FLEURs, ASTForCTC tended to
add extra "s"’s to the end of the sentence. On Lib-
rispeech, it sometimes hallucinated extra vowels.

5 Conclusion

The goal of this work was to evaluate the Au-
dio Spectrogram Transformer (AST), a novel vi-
sion transformer and convolution-free model that
achieves SOTA results on various audio classifica-
tion tasks in the context of spoken language un-
derstanding. We found that AST performed com-
petitively on emotion recognition and music genre
classification. AST achieved SOTA results com-
pared to attention (Att-Net) and hybrid attention-
CNN (MUSER) architectures. Though AST un-
derperformed the CNN (DS-CNN) architecture for
emotion recognition, it did not lag far behind. We
believe our results indicate that AST shows promise
as a foundation model for human speech classifica-
tion tasks.

In addition, we contribute a novel ASTForCTC
architecture for ASR and demonstrate promising
early results when training on only 10 hours and
100 hours of labeled data, respectively. A limitation
of our work was the amount of compute we had
available. To achieve performance potentially more
comparable to SOTA ASR models like Conformer,
we recommend fine-tuning ASTForCTC with at least
970 hours of labeled Librispeech data and possi-
bly further pre-training AST with more unlabeled
speech. Alternatively, to ablate the effect of dif-
ferent scales of pre-training and fine-tuning data,
one could train AST and Conformer, for example,
without any initialization from pre-trained model
weights.

Finally, we recommend evaluating the perfor-

Country music track

Hip-hop music track

Figure 2: Attention maps for two distinct music genres.
The differences illustrate how the AST model learns
to attend to different regions of the spectrogram for
classifying different genres of music.

mance of AST on multilingual classification tasks,
such as language identification. In addition, we
did not benchmark the training time and inference
speed of AST against CNN-based architectures and
leave that to future work.
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A Appendix

See the following page for selected ASR predic-
tions, spectrograms, and attention maps.
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Prediction Reference pwc / rwc / ratio

some people believe that
experiencing many ar-
tificially induced lucid
dreams often enough can
be very exhausting

some people believe that
experiencing many ar-
tificially induced lucid
dreams often enough can
be very exhausting

16 / 16 / 1.0

permits must be reserved
in advance you must
have a permit to stay
overnight at sirenassssss

permits must be reserved
in advance you must
have a permit to stay
overnight at sirena

16 / 16 / 1.0

(a) FLEURS ASR training predictions.

Prediction Reference pwc / rwc / ratio

a oy al al un ald wo
hernm os an sth ldg
hrndlsoni wn weshey
iaodnighissssssss

in some areas boiling
water for a minute is
enough in others several
minutes are needed

16 / 16 / 1.0

aoas alsi toilnsd tans pan
cailehtan s.iic tafnendan
inirds...

oliver sacks in his paper
the president’s speech in-
dicated how people...

28 / 28 / 1.0

(b) FLEURS ASR test predictions.

Prediction Reference pwc / rwc / ratio

my fathe was and still
is wecivver generl at se
he as aegret repputation
their for voalty thanks to-
hich whe sable thein t se-
cur o e e aa o e o e e e

my father was and still
is receveur general at c
he has a great reputation
there for loyalty thanks
to which he was able to
find the security...

34 / 37 / 0.92

i cam to pars study vaw
was calld to the baur and
like omny other youung
men but my deplo endmy
poctet and lett myself
drift o e e a oe o o e

i came to paris stud-
ied law was called to
the bar and like many
other young men put my
diploma in my pocket
and let myself drift...

34 / 34 / 1.0

(c) Librispeech ASR training predictions.

Prediction Reference pwc / rwc / ratio

conclored returned too
hich placse am mits
thetente

concord returned to its
place amidst the tents

8 / 8 / 1.0

i am comvingced ive
what i say said be count

i am convinced of what i
say said the count

10 / 10 / 1.0

thus it is that the oner of
the we is save acuntry ar
laster’s and nor hone

thus it is that the honor of
three is saved our coun-
try’s our master’s and
our own

17 / 17 / 1.0

(d) Librispeech ASR test predictions.

Figure 3: ASR predictions for the FLEURS and Lir-
brispeech training and test datasets. pwc is the predicted
word count, and rwc is the reference word count. Hallu-
cinations are shown in blue.

Figure 4: The Mel-spectrogram and selected attention
maps for a "calm" sample audio track in SER.

Figure 5: The Mel-spectrogram and selected attention
maps for a sample from Librispeech. This track consists
of a female voice saying, "Hurstwood walked the floor
mentally arranging the chief points of his situation."

6


